C032036 Mark-up Langauges Lecture 3 XSLT

k Lecture 3 XSLT

In which we examine some of the features and uses of the extensible style sheet language
XSLT.

1. Overview

An XSL transformation can be used to transform an XML document into another
document. We design the XML format to be data-oriented — that is the definition of the
nodes and attributes are geared toward the data that we need to represent. In order to view
this data we need to transform it.

XSL can be used to transform XML into any format we want — perhaps one of the most
obvious uses is to convert XML data into HTML that may be easily viewed on a web
browser. The XSL document describes this transformation.

The behaviour of the XSL transformation is defined by W3C, there are a number of
implementations — many claim to be complete. We will be using the XALAN processor
from the Apache/XML project.

XSL looks like XML — sadly there is no DTD for XSL.

2. Typical uses of XSL

We have a source of XML. This source can be filtered by one or more XSL documents to
provide different views of the data suitable for different users.

source.xml
a.xsl b.xsl
XALAN XALAN
a.html b.html

Page 1 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

2.1 Generating HTML

In this application of XSL the document source.xml contains all of the data that we have.
User A requires to see only some of the data — her requirements are specified in the style
sheet a.xsl — when we run xalan against source.xml and a.xsl we get a.html as a result.

Some important results:
e The document a.html is normal html and can be viewed with any browser.

e The users requirements are encapsulated in the xsl document — large numbers of
these documents may be built up if that is appropriate.

¢ The format of the original data source is (mostly) independent of the end users
requirements.

¢ We can allow the XML format to expand over time — in many cases trivial changes
to the DTD for source.xml can be made and the style sheets will still work.

3. Get on with it: legend example

We examine some simple XSL documents which may be used to transform our
supermarket XML source stock.xml, the style sheet legend.xsl and the result legend.html:

<?xml version="1.0"7?>

<stock>

<item price="50" legend="Pr-Burger" BarCode="E1"/>
<item price="15" legend="Crisp S+V" BarCode="E5"/>
<item price="15" legend="Crisp C+0O" BarCode="E6"/>
<item price="50" legend="Flat Cola" BarCode="E7"/>
</stock>

<?xml version="1.0"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

<xsl:template match="item">
<p><xsl:value-of select="Q@legend"/></p>
</xsl:template>

</xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>
<p>Pr-Burger</p>
<p>Crisp S+V</p>
<p>Crisp C+0</p>
<p>Flat Cola</p>

Page 2 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

3.1 The stylesheet: preamble

The preamble to the XSL declares that this is an xml document and provides a namespace
declaration. We will not trouble ourselves with this other that to note that it is fixed and is
required:

<?xml version="1.0"7?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform">

style sheet nodes...

</xsl:stylesheet>

3.2 Template nodes

In this case the stylesheet node contains a single template. This template is set to match
any item node in the stock.xml file. As the stock.xml file includes four such nodes it
“kicks-off” four times during processing.

<xsl:template match="item">
content...
</xsl:template>

Had we chosenmatch = "/" ormatch = "stock" the template would fire off just
once.

3.3 Template content

The content of the template is a mixture of HTML tags and an xsl node.

<p><xsl:value-of select="Q@legend"/></p>

The html is copied straight to the output. The xsl:value-of node is replaced with a
corresponding value.

Page 3 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

4. Some XSL rules

® The xsl document is a well formed xml document — this means that the embedded
html must be well formed xml as well as being html. It is sensible (but not
obligatory) to use xhtml. There are tricks that can be used to output non-xml.

e There are a large number of complicated ways to match nodes. In our example we
simply pick out a particular type of node. Other options include:

o Matching nodes with particular parentage (match a only if it occurs
within a <table> for example).

o Matching nodes in particular positions (match the first node in each

 list)
o Matching nodes with specific attributes (match those nodes
and <link href=".." > nodes)

4.1 Questions

e Write an xsl document that will take a well formed xhtml page and output all of the
links on that page.

e Write an xsl document that will output a list of the addresses of the images on an
xhtml page.

e Write an xsl document that will output just the major headings (h1 tags) — you need

nn

to know that <xsl:value-of select="."> gives the text content of a tag

(Beware — we have not discussed name-spaces which are used in many cases. To make

these work in practice you can precede matches with htm: as in
<xsl:template match="htm:a">)

You will also need to declare the namespace htm using a text such as:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:htm="http://www.w3.0rg/1999/xhtml" >

4.2 More matching examples from http://www.w3.org/TR/xpath#path-abbrev

para selects the para element children of the context node
* selects all element children of the context node
text () selects all text node children of the context node
€name selects the name attribute of the context node

Page 4 © 2004 Napier University

C032036 Mark-up Langauges

Lecture 3 XSLT

@*

selects all the attributes of the context node

parall]

selects the first para child of the context node

parallast ()]

selects the last para child of the context node

* /para

selects all para grandchildren of the context node

/doc/chapter [5]/section[2]

selects the second section of the fifth chapter of the
doc

chapter//para

selects the para element descendants of the chapter
element children of the context node

//para

selects all the para descendants of the document
root and thus selects all para elements in the same
document as the context node

//olist/item

selects all the item elements in the same document
as the context node that have an olist parent

selects the context node

.//para

selects the para element descendants of the context
node

selects the parent of the context node

../@lang

selects the lang attribute of the parent of the context
node

para[@type="warning"]

selects all para children of the context node that
have a type attribute with value warning

para[@type="warning"] [5]

selects the fifth para child of the context node that
has a type attribute with value warning

paral[5] [@type="warning"]

selects the fifth para child of the context node if that
child has a type attribute with value warning

chapter[title="Introduction"]

selects the chapter children of the context node that
have one or more title children with string-value
equal to Introduction

chapter[title]

selects the chapter children of the context node that
have one or more title children

employee[@secretary and
@assistant]

selects all the employee children of the context node
that have both a secretary attribute and an assistant
attribute

Page 5 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

5. Data oriented XSL processing with one match

For the sake of your sanity you are advised not to delve too deeply into the node tree.
There are often many ways to achieve a particular result. In many cases the following will
suffice:

Match only the root node. This means that you will have one large xsl:template node.
Typically:

e Values from the source document are referenced using xsl:value-of nodes where
the select attribute addresses the required value.

e This works well with source documents of known depth — there are no recursively
nested structures (such as a table within a table...)

e Repeated elements may be processed using xsl:for-each

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
>

<xsl:template match="/">
<p>Number of product lines in stock:
<xsl:value-of select="count (/stock/item)"/></p>
<p>Here they are: </p>

<xsl:for-each select="/stock/item">
<xsl:value-of select="@legend"/></1li>
</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

<?xml version="1.0" encoding="UTF-8"?>
<p>Number of product lines in stock:

4</p><p>Here they are: </p>Pr-BurgerCrisp S+VCrisp C+OFlat
Cola

Page 6 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

6. Data oriented processing with pattern matching

We can use template rules to achieve something similar to the above. We create a template
to match the stock node and another to match each item node.

We must explicitly specify in the stock template that further processing is required:

<?xml version="1.0"7?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
>

<xsl:template match="stock">
<p>Number of product lines in stock:
<xsl:value-of select="count (item)"/></p>
<p>Here they are: </p>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="item">
<xsl:value-of select="@legend"/></1i>

</xsl:template>

</xsl:stylesheet>

7. Declarative vs. Imperative

XSL is at attempt at a declarative style of processing.

In imperative (traditional) computing we write programs that go through a sequence of
operations — each of which changes the state of some data structure or object.

In a declarative system we attempt to describe the desired outcome and rely on another
system to realise the transformation.

8. Built-in template

There are a number of built-in template rules that are included in even a blank stylesheet.
One of these causes all text nodes to be copied to the output —

Page 7 © 2004 Napier University

C032036 Mark-up Langauges Lecture 3 XSLT

<xsl:template match="text()|@*">
<xsl:value-of select="."/>

</xsl:template>

Commonly we override this with our own version:

<xsl:template match="text()l@*"/>

9. Narrative oriented processing

Applications such as html have arbitrarily nested structures. Commonly
structures will be nested and we can have no guarantees about how deep the nesting will
be. In such cases the single matching approach is likely to be more difficult.

It may be that in these cases we are not interested in such precise processing and a simpler
stylesheet such as css will suffice.

k End of unit summary

k XSL allows us to define stylesheets which transform XML documents
k Transformations of appalling complexity are possible

k DTD plus XSL neatly allow us to specify and separate the data from the
application of the data

k XSL is commonly split into three components XSLT (the transformation)
XPath (roughly the expressions that can appear in match and select attributes)
and Formatting Objects (we have not covered these)

k The frightening complexity of XSL may be reduced using the same sort of
techniques that we are used to. Templates may be seen as sub-routine. Also we
can allow for more than one XSL transformation in order to break down
complex procedures and save work.

Page 8 © 2004 Napier University

