
CO32036 Mark up Languages Lecture 7: SAX

 Page 1 © 2004 Napier University

Lecture 7: SAX

In which we examine some of the features and uses of the SAX – the simple API for

XML.

1. Overview

SAX is an API – that is an application programmer interface. It includes a number of

procedures/methods that application programmers can use.

2. SAX vs. DOM

We can only assume that S in SAX stands for simple-to-implement rather than simple-to-

use. SAX is generally rather complicated to use – DOM usually provides an easier way to

access XML documents.

SAX has one main advantage over DOM – it is much less expensive to execute for large

documents. A DOM program must load the entire document into a program structure.

Typically the memory required is several times the size of the document and this can be

very expensive – particularly when the memory required exceeds the available RAM. In

this case the program starts "paging" (swapping memory to disk) resulting in very poor

performance.

Implementations of DOM are often built on top of SAX parsers.

3. Java

We use Java examples. SAX was originally defined and implemented in Java. It is

available for many languages.

In Java we implement the ContentHandler class in order to write a SAX program. In other

languages different mechanism may be used.

4. class ContentHandler

The class ContentHandler has an interface defined at

http://www.saxproject.org/apidoc/org/xml/sax/ContentHandler.html

CO32036 Mark up Languages Lecture 7: SAX

 Page 2 © 2004 Napier University

Some important methods of ContentHandler

 void characters(char[] ch, int start, int length)

 Receive notification of character data.

 void endDocument()

 Receive notification of the end of a document.

 void endElement(java.lang.String uri, java.lang.String localName,
java.lang.String qName)

 Receive notification of the end of an element.

 void startDocument()

 Receive notification of the beginning of a document.

 void startElement(java.lang.String uri, java.lang.String localName,

java.lang.String qName, Attributes atts)

 Receive notification of the beginning of an element.

There are six other methods that must be implemented setDocumentLocator
startPrefixMapping endPrefixMapping skippedEntity

processingInstruction ignorableWhitespace – we will not consider them

here.

A SAX program will typically implement ContentHandler. The appropriate methods are

called by the parser as the document is processed.

4.1 Step by step behaviour of a parser

Input document Sequence

 startDocument

<x v='1' w='2'> StartElement:

localName = "x"

atts = represents structure with v="1" and w="2"

abc characters

ch = "<x v='1' w='2'>abc</x>

start = 15

length = 3

</x> EndElement

localName = "x"

 endDocument

CO32036 Mark up Languages Lecture 7: SAX

 Page 3 © 2004 Napier University

5. Using the ContentHandler

S.java
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.io.IOException;
public class S {
 public static void main(String[] args) {
 XMLReader parser;
 try {
 parser = XMLReaderFactory.createXMLReader(
 "org.apache.xerces.parsers.SAXParser");
 }
 catch (SAXException e) {
 return;
 }
 parser.setContentHandler(new NodeCounter());
 try {
 parser.parse("../stock.xml");
 }
 catch (Exception e) {
 System.out.println(e.toString());
 }
 }
}
NodeCounter.java
import org.xml.sax.*;
public class NodeCounter implements ContentHandler {
 int nodeCount;
 public void startDocument() throws SAXException {
 nodeCount=0;
 }
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 nodeCount++;
 }
 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException {
 }
 public void endDocument() throws SAXException {
 System.out.println("Number of nodes: " + nodeCount);
 }
 // Do-nothing methods
 public void setDocumentLocator(Locator l) {}
 public void startPrefixMapping(String p, String u) throws SAXException {}
 public void endPrefixMapping(String p) throws SAXException {}
 public void skippedEntity(String n) throws SAXException {}
 public void processingInstruction(String t, String d) throws SAXException {}
 public void characters(char[] t, int s, int l) throws SAXException {}
 public void ignorableWhitespace(char[] t, int s, int l)throws SAXException{}
}

CO32036 Mark up Languages Lecture 7: SAX

 Page 4 © 2004 Napier University

6. Keeping track of context

Event based programs – where we get hooks into events that occur can be difficult. The

routine characters is executed many times during the processing of a document – unless

we keep track of the context we have no way of knowing what node we are in.

6.1 Using global variables to record state.

Suppose we need to count only the leaf nodes of a document. We can start with the

NodeCounter handler shown – but we need to count only those nodes that are at the tip of

the tree. We use a global variable nodeName – this is set as we enter an element and tested

as we leave an element.

We can be sure we are at a leaf if this variable matches the node name as we exit the

element.

…
 int leafCount;
 String nname;

 public void startDocument() throws SAXException {
 leafCount=0;
 nname = "";
 }

 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 nname = localName;
 }

 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException {
 if (nname == localName) leafCount++;
 nname = "";
 }

 // Now that the document is done, we can print out the final results
 public void endDocument() throws SAXException {
 System.out.println("Number of leaves: " + leafCount);
 }
…

CO32036 Mark up Languages Lecture 7: SAX

 Page 5 © 2004 Napier University

7. DOM vs SAX

SAX is an event based parser. Instead of loading the whole XML document SAX "fires-

off" events at various points. We can require that an event occurs every time a particular

node is started or when it has completed.

Consider a web browser. For long documents the browsers usually start displaying before

the entire document is loaded – in many cases the browser will be able to refresh the

display after each <p> node is read. However a table cannot be displayed until the entire

table has loaded (why?)

While DOM provides facilities for changing the document SAX cannot (of course it can

build up a copy as it goes).

DOM constructs an in-memory copy of the whole document. SAX need not. SAX can deal

with very large documents efficiently.

As XML files are often loaded over (relatively) slow networks the performance of a SAX

program may well be significant.

There is an overhead to DOM – the structure in memory may be many times the size of the

raw file on disk.

End of unit summary

SAX is a "Simple API for XML" – for simple read "primitive"

 SAX allows serial access to XML files

SAX uses an event driven style

State variables are pretty much unavoidable

Event-based parsers such as SAX operate allow the document to be processed

as it loads.

CO32036 Mark up Languages Lecture 7: SAX

 Page 6 © 2004 Napier University

SAX Questions

<?xml version="1.0" encoding="UTF-8" ?>
<stock andrew="was here">
 <item price="50" legend="Pr-Burger" BarCode="E1" />
 <item price="15" legend="Crisp S+V" BarCode="E5" />
 <item price="15" legend="Crisp C+O" BarCode="E6" />
 <item price="50" legend="Flat Cola" BarCode="E7" />
</stock>

Describe the output of each of the following programs fragment. You should assume that

all the missing required methods are present but do nothing:

1)

 int depth=0;

 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 depth++;
 System.out.println(localName + ":" + depth);
 }

 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException {
 depth--;
 }

2)

 int depth=0;
 int maxDepth=0;

 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 depth++;
 maxDepth=Math.max(maxDepth,depth);
 }
 public void endElement(String namespaceURI, String localName,
 String qualifiedName) throws SAXException {
 depth--;
 }
 public void endDocument() throws SAXException {
 System.out.println(maxDepth);
 }

CO32036 Mark up Languages Lecture 7: SAX

 Page 7 © 2004 Napier University

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE movie SYSTEM "movie.dtd">
<movie id="_0034583">
 <title year="1942">Casablanca</title>
 <director>Michael Curtiz</director>
 <cast>
 <part>
 <actor>Humphrey Bogart</actor>
 <character>Richard "Rick" Blaine</character>
 </part>
 <part>
 <actor>Ingrid Bergman</actor>
 <character>Ilsa Lund Laszlo</character>
 </part>
 <part>
 <actor>Paul Henreid</actor>
 <character>Victor Laszlo</character>
 </part>
 <part>
 <actor>Claude Rains</actor>
 <character>Captain Louis Renault</character>
 </part>
 </cast>
 <genre style="drama romance"/>
 <tagline>They had a date with fate in Casablanca!</tagline>
 <rating votecount="41057" date="17 Feb 2003">8.8</rating>
 <runtime>102 min</runtime><color value="false"/>
</movie>

 boolean printOn;
 public void startDocument() throws SAXException {
 printOn=false;
 }
 public void startElement(String namespaceURI, String localName,
 String qualifiedName, Attributes atts) throws SAXException {
 printOn = (localName.equals("director"));
 }
 public void characters(char[] t, int s, int l) throws SAXException {
 if (printOn)
 System.out.print(new String(t,s,l));
 printOn=false;
 }

How would we print the cast?

How could we print only the leading actor?

How could we count the cast?

