
Internet Mark-up Languages - CO32036

AJAX – Asynchronous Javascript And XML
mjr 4.10.06

Lecture Contents

• Some basic JavaScript.

• How to use alert boxes for debugging.

• How to read a data file without changing web page.

• How to change text in a web page without refreshing the page

• How a web page can pull data out of an XML file and display it.

AJAX - Definition

The term AJAX stands for “Asynchronous JavaScript And XML”. In practice, the

technique can be used and is used without the need for any XML technology, but we’re

going to teach that anyway.

AJAX includes a way of updating information on a web page without updating the page.

This leads into a very useful way of running applications within browsers (like Outlook

OWA). The implication is that it is now possible to write applications specially to be

downloaded and run within browser windows. These could be games, but business

applications like word processors and graphics editors are also possible. Google already

offers a browser-based word processor (Writely) and a graphics editor (Picasa)

Ajax is not a programming language - most of its programming works on the client side

using JavaScript. Nor is AJAX a server technology - it runs on ordinary web servers,

downloading files from the server in the usual way. In some AJAX applications there

may be PHP or some other server application running, but that is not at the heart of what

AJAX is about.

Having said what JavaScript is not, let us now try and say what it is: AJAX is a browser

technology, which uses only JavaScript in the browser page. It employs a very efficient

way of updating information, DOM the Document Object Model (which is a standard

part of the JavaScript language). It is also a way of making applications smaller, faster,

easier to use.

...and then there’s the portability. Don’t forget the portability. AJAX will run in most of

the mainstream browsers in use today.

AJAX and Standards

Some technologies are based on proprietary standards. A good example is Flash: before

you can use Flash you have to buy the authoring tool. AJAX is based on open standards.

Anyone can sit at an ordinary computer and author AJAX applications in an ordinary

text editor. (Nevertheless, tools can be very useful!)

AJAX is based on the following international standards:

• JavaScript (ECMAScript)

• XML

• HTML

• CSS

• HTTP

Although Netscape originated the JavaScript language, Microsoft quickly responded by

releasing a non-compatible dialect, called JScript. Users then appealed to the European

Computer Manufacturers Association to provide a negotiated compromise, which was

then published as ECMAScript. Even today, some functions in JavaScript are only

practicable by writing two sets of code - one for Microsoft Internet Explorer and one for

the rest of us.

How AJAX Works

AJAX uses two basic tricks. These are:

• HTML request to server: XMLHttpRequest()

• The Document Object Model (DOM)

(We’ll be looking at DOM in greater depth in another lecture)

In typical operation, the user triggers an HTML event, such as onClick or onMouseOver.

A JavaScript program then sends an HTTP request to the server. The server supplies a

file, as servers usually do. That file may be XML, HTML, text or any other data format.

The JavaScript in the current browser page selects part of the data in the file for display.

Then a JavaScript statement alters the browser display according to the data in the

document. This usually means displaying some new data at an appropriate point on the

web page.

Programming Examples

If you are impatient, you can learn about AJAX very quickly by simply looking up how

to use XMLHttpRequest() in both standard and Microsoft technologies, and then learning

DOM and HTML events. That’s where we’re going, but we’re going to take a gentler

route:

1. alertbox.htm

The alert box is probably the easiest piece of JavaScript to get to work. Having used it to

gain confidence, it remains a very powerful debugging tool:

<html>

<head> </head>

<body>

<input type='button' onclick="javascript:alert('Boo!')"

value='spin'/>

</body>

</html>

Most HTML entities (like links, images and form elements) have permissible behaviours

associated with them. In this example, a button is made to perform a JavaScript

instruction when it is clicked. That instruction causes an alert box to pop up.

2. abfunc.htm

Although JavaScript may be used in-line as in the previous simple example, it is better

practice to put the JavaScript into the head of the page as a group of functions. This may

be left there during debugging, but when it works, the page is made even tidier by making

the JavaScript a separate file which is then included in the page at download time.

<html> <head>

<script type='text/javascript'>

function popup(message)

 { alert(message); }

</script> </head>

<body>

<input type='button' onmouseover="popup('Boo!')"

value='wash'/>

</body> </html>

The browser screen and alert box look just the same as in the previous example.

IE Only

(3iesuck.htm)

The next program gets a text file from the server and displays the contents in an alert box.

To do this, it uses the instruction, “XMLHttpRequest()”. To keep it simple, I’ve written a

program that will only work in Internet Explorer, so it doesn’t use XMLHttpRequest(),

but Microsoft’s idiosynchratic version thereof, “XMLHTTP”.

Microsoft doesn’t conform to standards, so JavaScript usually needs to do browser

detection and have two sets of code. The box below shows only the JavaScript function.

<script type='text/javascript'>

var suck

function popupfile() {

suck=new ActiveXObject("Microsoft.XMLHTTP")

suck.open("GET","text.txt",true)

suck.onreadystatechange=stateChanged

suck.send(null) }

function stateChanged() {

if (suck.readyState==4) {

 alert(suck.responseText); } }

</script>

This piece of code does not operate step by step. When the function popupfile() is

activated from the body of the HTML, it sets up a number of processes as objects. These

processes are activated when the function sends “null”. The XMLHTTP line activates

the Microsoft ActiveXObject. Then a request is sent to the server to get file “text.txt”.

(It could contain anything; it actually contains the words “An ordinary line of text”.)

Then it waits, monitoring the status of the XMLHTTP object, until the it goes into state 4,

indicating that the file has arrived. At that point it pops up the alert box, containing the

text of the file.

4. allpop.htm

Now we’re going to look at the cross-browser version. This is going to be a little more

complicated, but this standard cross-browser solution can be used and reused, and that is

some comfort. I share your pain, but this complexity is because Microsoft uses a refusal

to standardise as a marketing strategy. We start out by finding out which browser we’ve

arrived in. This first function finds out what the browser is and sorts out an XMLHTTP

object for it...

function GetXmlHttpObject() {

var objXMLHttp=null

if (window.XMLHttpRequest) {

 objXMLHttp=new XMLHttpRequest() }

else if (window.ActiveXObject) {

 objXMLHttp=new ActiveXObject("Microsoft.XMLHTTP")

}

return objXMLHttp }

So far so good. Whatever the browser, we’ve activated its XMLHTTP object and given

it a standard name to refer to it by. Now the main body of the request, which is similar to

the all-IE version: As before, we set up a set of threads, which will “happen” when

“send” fires them off. We use the appropriate function for this particular browser

(xmlHttp), which we discovered in the function above:

var xmlHttp

function popupfile() {

xmlHttp=GetXmlHttpObject()

if (xmlHttp==null) {

 alert ("Browser does not support HTTP Request")

return }

xmlHttp.onreadystatechange=stateChanged

xmlHttp.open("GET","text.txt",true)

xmlHttp.send(null)

}

A few lines of that routine would be familiar from the example before.

Finally we wait for the text file to come in from the server. When it’s in, we pop up the

contents in an alert box:

function stateChanged() {

 if (xmlHttp.readyState==4) {

 alert(xmlHttp.responseText);

 }

}

...so really, the only difference between this general example and the specialised IE

example before is the code for finding out which browser we’re in and therefore which

object we have to use.

You may become better than me, but I find it very difficult to remember all this code. So

I make sure I’ve got a working prototype somewhere and cut and paste from that. Then I

hack accordingly.

5. within.htm

Eventually, we’re going to have to learn how to put imported text into our document. We

can’t keep on using alert boxes (even though they are fantastic for debugging). This next

example shows how this is done

<input type='button' onclick='rewriter("here","banana")'

value='banana'/>

On clicking this button, it calls a function called “rewriter” to put the word “banana” into

a place called “here”. Now all we need is a function called “rewriter”. It uses a DOM

(Document Object Model) instruction.

<script type='text/javascript'>

function rewriter(where,what){

document.getElementById(where).innerHTML = what;

}

</script>

We use the DOM instruction “getElementById” to put text “what” into an HTML

element with an ID of “where”. Here is an example of a piece of HTML with an ID for

writing into:

<p>

I wish someone would give me a piece of

 unspecified fruit

to have with my lunch.

</p>

We could use the ID of any element, such as <p> or <div>, but is so useful!

6. withinphp.htm

In the next example, we use an external PHP file to supply a value. The PHP programme

may be as simple or as complicated as you want (this one is very simple). It may

sometimes be more convenient for you to use PHP to access the data system, whatever it

is. Popular data systems for the web include MySQL and XML. If you’re a Microsoft

fan, you may even consider Access, with or without ASP technology.

xmlHttp.open("GET", "test.php?action="+what, true)

See how we have built up a typical PHP “get”-type parameter-passing request by adding

a parameter (“what”) to the text of an URL. An example of the entire URL might be:

http://www.eg.com/test.php?action=one

We aren’t teaching PHP here, but if you really are interested in the contents of the simple

little PHP file, here it is:

<?php switch($_REQUEST['action']) {

 case 'one':

 echo "grapefruit";

 break;

 case 'two':

 echo "banana";

 break;

 default:

 echo "missed everything!";

 break;

 } ?>

In the code, “switch” is PHP for a case statement. The array element

$_REQUEST['action'] accesses that one input parameter in the URL that we chose

to give the name of “action”. Meanwhile, “echo” is the programme’s output.

7. xml.htm

Lastly, we get and display the root element of an XML file. We have already covered the

process of getting a file from a server. The object responseText has become

reponseXML here because we want the browser to treat it as XML.

xmlHttp.open("GET","test.xml",true)

if (xmlHttp.readyState==4) {

var xmldoc = xmlHttp.responseXML;

We needed a variable to use to refer to our XML document (object), so we’ve used

“xmldoc”. We then lock onto the node that I happen to have called ‘napier’ :

var root_node =

xmldoc.getElementsByTagName(‘napier').item(0);

Then, with another DOM instruction, we find its first child and feed that data into our

web page:

document.getElementById('here').innerHTML =

root_node.firstChild.data;

Summary

What have we learned? We now know a little JavaScript. We can use alert boxes for

debugging. We always knew how to read a file from the server; now we can do it

without changing web page. We can change some of the text of our page, on the fly. We

can pull data out of an XML file and display it.

Tutorial Work

Find http://w3schools.com and do their AJAX course.

Find the directory of example programs on the server. One source is WebCT, another is:

http://www.dcs.napier.ac.uk/~mjr/co32036/ajax/

Read them and make sense of what you read.

Run them and prove to yourself that they actually go.

Learn through play: Hack them around and make them do something else.

