
CO32036 Mark up languages Lecture 1: XML

 Page 1 © 2004 Napier University

Lecture 1: XML and DTD

1. XML Extensible Markup Language

XML is a method of putting structured data in a file format. XML aims to be easy to write,

easy to read (by machine) and sufficiently rich to permit the kinds of data people are likely

to need.

• An XML document includes text and mark-up; just like HTML.

• XML permits new markup tags to be defined

• XML is rather more strict than HTML

2. Well formed XML

From http://www.w3.org/TR/2000/REC-xml-20001006

Definition: A textual object is a well-formed XML document if:

1. Taken as a whole, it matches the production labelled document.

2. It meets all the well-formedness constraints given in this specification.

3. Each of the parsed entities which is referenced directly or indirectly within the

document is well-formed.

2.1 Notes

• Tags must be closed.

• Elements may contain elements - nesting must "proper".

• Tags may contain attributes.

• Characters such as < and & must be "escaped" as < and &

CO32036 Mark up languages Lecture 1: XML

 Page 2 © 2004 Napier University

3. Valid XML

If an XML document is well-formed we may ask if it is valid. A valid XML document is

one that agrees with the additional rules set out in a DTD (document type definition). The

DTD includes

· ELEMENT: These dictate what kind of child nodes each element is permitted.

· ATTLIST: This indicates what kind of attributes are permitted.

3.1 A simple example of valid XML

The supermarket system records the stock in XML format.

3.1.1 supermarket.dtd

<!ELEMENT stock (item*)>

<!ELEMENT item EMPTY>

<!ATTLIST item BarCode ID #REQUIRED

 legend CDATA #REQUIRED

 price CDATA #REQUIRED>

3.1.2 stock.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE stock SYSTEM "supermarket.dtd">

<stock>

 <item price="50" legend="Pr-Burger" BarCode="E1"/>

 <item price="15" legend="Crisp S+V" BarCode="E5"/>

 <item price="15" legend="Crisp C+O" BarCode="E6"/>

 <item price="50" legend="Flat Cola" BarCode="E7"/>

</stock>

3.2 Validating parsers

A validating parser will check that a given XML document agrees with it’s associated

DTD Validating parsers may be found at http://www.ltg.ed.ac.uk/~richard/xml-check.html

The data files used here are http://www.dcs.napier.ac.uk/~andrew/xml/supermarket/

CO32036 Mark up languages Lecture 1: XML

 Page 3 © 2004 Napier University

3.3 DTD Syntax

3.3.1 !ELEMENT

The elements tags describe the children that a node may have

EMPTY The node may have no children

ANY Anything goes

#PCDATA Parsed character data – normal characters – but no mark up elements

A? matches A or nothing; optional A.

A, B matches A followed by B. This operator has higher precedence than

alternation; thus A, B | C, D is identical to (A, B) | (C, D).

A | B matches A or B but not both

A+ matches one or more occurrences of A – the same as A, A*

A* matches zero or more occurrences of A

3.3.2 !ATTLIST

The attlist tag describes the attributes permitted.

NMTOKEN Rather like a variable name, no spaces, must start with an alpha or _

NMTOKENS A space separated list of NMTOKEN

ID A unique token – maybe used to uniquely identify a node

IDREF A value that shows up as an ID within this file

IDREFS A space separated list of IDREF values

CDATA Any reasonable string (no special characters)

3.3.3 !ENTITY

The entity tags allow us to define entities that may be referred to later. & Entities can show

up in the text of the XML, % entities are used in the DTD.

CO32036 Mark up languages Lecture 1: XML

 Page 4 © 2004 Napier University

3.4 A further example

3.4.1 today.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE day SYSTEM "supermarket.dtd">

<day>

 <basket>

 <beep BarCode="E1"/>

 <beep BarCode="E5"/>

 <beep BarCode="E5"/>

 <beep BarCode="E5"/>

 <payment>

 <cash/>

 </payment>

 </basket>

 &stk;

</day>

3.4.2 supermarket.dtd - extended

<!ELEMENT stock (item*)>

<!ELEMENT item EMPTY>

<!ATTLIST item BarCode ID #REQUIRED

 legend CDATA #REQUIRED

 price CDATA #REQUIRED>

<!ELEMENT day (basket*, stock)>

<!ELEMENT basket (beep*,payment)>

<!ELEMENT beep EMPTY>

<!ELEMENT payment (cash|card)>

<!ELEMENT cash EMPTY>

<!ELEMENT card EMPTY>

<!ATTLIST beep BarCode IDREF #REQUIRED>

<!ENTITY stk SYSTEM "../supermarket/stock.xml">

Notice that:

• beep items must have valid barcodes

• we include the element stock from another file

• we permit payment to be either cash or card

CO32036 Mark up languages Lecture 1: XML

 Page 5 © 2004 Napier University

3.5 Questions

1. Which of the following are legal elements:

a <day></day>

b <day><basket></basket><basket/><stock/></day>

c <day><basket><beep BarCode="E1"/></basket><stock/></day>

d <day><basket>

 <beep BarCode="E1"/>

 <payment><cash/></payment>

 </basket>

<stock><item BarCode="E1" price="12" description="X"/></stock>

</day>

2. Suggest some attributes for the elements cash and card.

3. Payment may consist of a combination of cash and card. However there must be at

least one and the must be no more than one cash element. Identify the appropriate

changes to the DTD.

4. Suggest some appropriate attributes for the day element

5. Suggest how system could be updated to deal with

a. more than one till

b. historical data

CO32036 Mark up languages Lecture 1: XML

 Page 6 © 2004 Napier University

3.6 Multiple Choice Version One

The following XML document has been used to store multiple choice questions and

answers.

<?xml version="1.0"?>
<questions>
 <quest id="000001">
 <title>What tag is used with DataBind()</title>
 <q1><%=</q1>
 <q2><%#</q2>
 <q3><%-</q3>
 <q4><%%</q4>
 <q5><%+</q5>
 <correct>q2</correct>
 <level>3</level>
 </quest>
 <quest id="000002">
 <title>Which language is C# based on:</title>
 <q1>English</q1>
 <q2>Basic</q2>
 <q3>C++</q3>
 <q4>Visual Basic</q4>
 <correct>q3</correct>
 <level>1</level>
 </quest>
</questions>

How might we design a DTD for this document? It may be that we have to change the

format slightly.

In particular

• How might the q tags be restricted in a DTD? We may assume:

o there are at least two tags

o there are never more than 6 tags in the sequence <q1>, <q2>, …

o They must occur in order.

• Why might we want to change the format of the quest id attributes?

• The correct tag indicates the right answer. How might we use the DTD to enforce

this reference?

