
Thousands of Threads and Blocking I/O
The old way to write Java Servers is New again

(and way better)

Paul Tyma
paul.tyma@gmail.com

paultyma.blogspot.com

 C2008 Paul Tyma2

Who am I

● Day job: Senior Engineer, Google
● Founder, Preemptive Solutions, Inc.

– Dasho, Dotfuscator

● Founder/CEO ManyBrain, Inc.
– Mailinator
– empirical max rate seen ~1250 emails/sec
– extrapolates to 108 million emails/day

● Ph.D., Computer Engineering, Syracuse
University

 C2008 Paul Tyma3

About Th i s Ta lk

● Comparison of server models
– IO – synchronous
– NIO – asynchronous

● Empirical results
● Debunk myths of multithreading

– (and nio at times)

● Every server is different
– compare 2 multithreaded server applications

 C2008 Paul Tyma4

An a rgument over se rver
des ign

● Synchronous I/O, single connection per
thread model
– high concurrency
– many threads (thousands)

● Asynchronous I/O, single thread per
server!
– in practice, more threads often come into play

– Application handles context switching between
clients

 C2008 Paul Tyma5

Evo lu t ion

● We started with simple threading
modeled servers
– one thread per connection
– synchronization issues came to light quickly
– Turned out synchronization was hard

● Pretty much, everyone got it wrong
● Resulting in nice, intermittent, untraceable,

unreproducible, occasional server crashes
● Turns out whether we admit it or not, “occasional”

is workable

 C2008 Paul Tyma6

Evo lu t ion

● The bigger problem was that scaling was limited

● After a few hundred threads things
started to break down
– i.e., few hundred clients

● In comes java NIO
– a pre-existing model elsewhere (C++, linux,

etc.)

● Asynchronous I/O
– I/O becomes “event based”

 C2008 Paul Tyma7

Evo lu t ion - n io

● The server goes about its business and is
“notified” when some I/O event is ready
to be processed

● We must keep track of where each client
is within a i/o transaction
– telephone: “For client XYZ, I just picked up

the phone and said 'Hello'. I'm now waiting
for a response.”

– In other words, we must explicitly save the
state of each client

 C2008 Paul Tyma8

Evo lu t ion - n io

● In theory, one thread for the entire server
– no synchronization
– no given task can monopolize anything

● Rarely, if ever works that way in practice
– small pools of threads handle several stages
– multiple back-end communication threads
– worker threads
– DB threads

 C2008 Paul Tyma9

Evo lu t ion

● SEDA
– Matt Welsh's Ph.D. thesis
– http://www.eecs.harvard.edu/~mdw/proj/seda
– Gold standard in server design

● dynamic thread pool sizing at different tiers
● somewhat of an evolutionary algorithm – try

another thread, see what happens
● Build on Java NBIO (other NIO lib)

http://www.eecs.harvard.edu/~mdw/proj/seda

 C2008 Paul Tyma10

Evo lu t ion

● Asynchronous I/O
– Limited by CPU, bandwidth, File descriptors

(not threads)

● Common knowledge that NIO >> IO
– java.nio
– java.io

● Somewhere along the line, someone got “scalable”
and “fast” mixed up – and it stuck

 C2008 Paul Tyma11

NIO vs. IO
(asynchronous vs. synchronous io)

 C2008 Paul Tyma12

An a t tempt to examine
bo th pa rad igms

● If you were writing a server today, which
would you choose?
– why?

 C2008 Paul Tyma13

R e a s o n s I ' v e h e a r d t o c h o o s e N I O
(n o t e : a l l o f t h e s e a r e u p t o d e b a t e)

● Asynchronous I/O is faster
● Thread context switching is slow
● Threads take up too much memory
● Synchronization among threads will kill

you
● Thread-per-connection does not scale

 C2008 Paul Tyma14

R e a s o n s t o c h o o s e t h r e a d - p e r -
c o n n e c t i o n I O
(a g a i n , m a y b e , m a y b e n o t , w e ' l l s e e)

● Synchronous I/O is faster
● Coding is much simpler

– You code as if you only have one client at a
time

● Make better use of multi-core machines

 C2008 Paul Tyma15

A l l the reasons
(f o r r e f e r e n c e)

● nio: Asynchronous I/O is faster
● io: Synchronous I/O is faster
● nio: Thread context switching is slow
● io: Coding is much simpler
● nio: Threads take up too much memory
● io: Make better use of multi-cores
● nio: Synchronization among threads will

kill you
● nio: Thread-per-connection does not scale

 C2008 Paul Tyma16

NIO vs . IO
w h i c h i s f a s t e r

● Forget threading a moment
● single sender, single receiver

● For a tangential purpose I was
benchmarking NIO and IO
– simple “blast data” benchmark

● I could only get NIO to transfer data up to
about 75% of IO's speed
– asynchronous (blocking NIO was just as fast)

– I blamed myself because we all know asynchronous
is faster than synchronous right?

 C2008 Paul Tyma17

NIO vs . IO

● Started doing some emailing and
googling looking for benchmarks,
experiential reports
– Yes, everyone knew NIO was faster
– No, no one had actually personally tested it

● Started formalizing my benchmark then found
● http://www.theserverside.com/discussions/thread.tss?thread_id=26700

● http://www.realityinteractive.com/rgrzywinski/archives/000096.html

http://www.theserverside.com/discussions/thread.tss?thread_id=26700
http://www.realityinteractive.com/rgrzywinski/archives/000096.html

 C2008 Paul Tyma18

Excerp ts

● Blocking model was consistently 25-35% faster than using
NIO selectors. Lot of techniques suggested by EmberIO folks
were employed - using multiple selectors, doing multiple (2)
reads if the first read returned EAGAIN equivalent in Java. Yet
we couldn't beat the plain thread per connection model with
Linux NPTL.

● To work around not so performant/scalable poll()
implementation on Linux's we tried using epoll with
Blackwidow JVM on a 2.6.5 kernel. while epoll improved the
over scalability, the performance still remained 25% below
the vanilla thread per connection model. With epoll we
needed lot fewer threads to get to the best performance
mark that we could get out of NIO.

Rahul Bhargava, CTO Rascal Systems

 C2008 Paul Tyma19

Asynchronous
(s i m p l i f i e d)

1)Make system call to selector

2)if nothing to do, goto 1

3)loop through tasks

a)if its an OP_ACCEPT, system call to accept
the connection, save the key

b)if its an OP_READ, find the key, system call to
read the data

c)if more tasks goto 3

4)goto 1

 C2008 Paul Tyma20

Synchronous
(s i m p l i f i e d)

1)Make system call to accept connection

(thread blocks there until we have one)

2)Make system call to read data

(thread blocks there until it gets some)

3)goto 2

 C2008 Paul Tyma21

St ra igh t Th roughput
* d o n o t c o m p a r e c h a r t s a g a i n s t e a c h o t h e r

nio server io server
0

100

200

300

400

500

600

700

800

900

1000

Linux 2.6 throughput

MB/s

nio server io server
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

Windows XP Throughput

MB/s

 C2008 Paul Tyma22

A l l the reasons

● nio: Asynchronous I/O is faster
● io: Synchronous I/O is faster
● nio: Thread context switching is slow
● io: Coding is much simpler
● nio: Threads take up too much memory
● io: Make better use of multi-cores
● nio: Synchronization among threads will

kill you
● nio: Thread-per-connection does not scale

 C2008 Paul Tyma23

Multithreading

 C2008 Paul Tyma24

Mul t i th read ing

● Hard
– You might be saying “nah, its not bad”

● Let me rephrase
– Hard, because everyone thinks it isn't

● http://today.java.net/pub/a/today/2007/06/28/extending-reentrantreadwritelock.html

● http://www.ddj.com/java/199902669?pgno=3

● Much like generics however, you can't avoid it
– good news is that the rewards are significant

– Inherently takes advantage of multi-core systems

http://today.java.net/pub/a/today/2007/06/28/extending-reentrantreadwritelock.html

 C2008 Paul Tyma25

Mul t i th read ing

● Linux 2.4 and before

– Threading was quite abysmal
– few hundred threads max

● Windows actually quite good
● up to 16000 threads

– jvm limitations

 C2008 Paul Tyma26

I n wa lks NPTL

● Threading library standard in Linux 2.6
– linux 2.4 by option

● Idle thread cost is near zero
● context-switching is much much faster
● Possible to run many (many) threads
● http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library

http://en.wikipedia.org/wiki/Native_POSIX_Thread_Library

 C2008 Paul Tyma27

T h r e a d c o n t e x t - s w i t c h i n g i s e x p e n s i v e

● Lower lines are faster – JDK1.6, Core duo

● Blue line represents up-to-1000 threads competing for the CPUs (core duo)

● notice behavior between 1 and 2 threads

● 1 or 1000 all fighting for the CPU, context switching doesn't cost much at
all

1 2 5 100 500 1000
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

HashMap Gets 0% Writes Core Duo

HashMap
ConcHashMap
Cliff
Tricky

number of threads

mi
llis

ec
on

ds

 C2008 Paul Tyma28

Synchronizat ion is
Expens ive

1 2 5 100 500 1000
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500

10000
10500
11000

HashMap Gets O% Writes Core Duo
Smaller is Faster

HashMap
SyncHashMap
Hashtable
ConcHashMap
Cliff
Tricky

number of threads

mi
llis

ec
on

ds

● With only one thread, uncontended synchronization is
cheap

● Note how even just 2 threads magnifies synch cost

 C2008 Paul Tyma29

● Synchronization magnifies method call overhead

● more cores, more “sink” in line

● non-blocking data structures do very well - we don't always need
explicit synchronization

1 2 5 100 500 1000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

HashMap Gets 0% writes
Smaller is faster

HashMap
SyncHashMap
Hashtable
ConcHashMap
Cliff
Tricky

number of threads

MS
 to

 co
mp

let
ion

4 core Opteron

 C2008 Paul Tyma30

How about a lo t more co res?
g u e s s : h o w m a n y c o r e s s t a n d a r d i n 3 y e a r s ?

1 2 5 100 500 1000
0

2500

5000

7500

10000

12500

15000

17500

20000

22500

Azul 768core 0% writes

HashMap
SyncHashMap
Hashtable
ConcHashMap
Cliff
Tricky

 C2008 Paul Tyma31

Thread ing Summary

● Uncontended Synchronization is cheap
– and can often be free

● Contended Synch gets more expensive
● Nonblocking datastructures scale well
● Multithreaded programming style is quite

viable even on single core

 C2008 Paul Tyma32

A l l the reasons

● io: Synchronous I/O is faster
● nio: Thread context switching is slow
● io: Coding is much simpler
● nio: Threads take up too much memory
● io: Make better use of multi-cores
● nio: Synchronization among threads will

kill you
● nio: Thread-per-connection does not scale

 C2008 Paul Tyma33

Many poss ib le N IO server
con f igu ra t ions

● True single thread
– Does selects
– reads
– writes
– and backend data retrieval/writing

● from/to db
● from/to disk
● from/to cache

 C2008 Paul Tyma34

Many poss ib le N IO server
con f igu ra t ions

● True single thread
– This doesn't take advantage of multicores
– Usually just one selector

● Usually use a threadpool to do backend work

● NIO must lock to give writes back to net thread

● Interview question:
– What's harder, synchronizing 2 threads or

synchronizing 1000 threads?

 C2008 Paul Tyma35

A l l the reasons

● io: Synchronous I/O is faster
● io: Coding is much simpler
● nio: Threads take up too much memory

CHOOSE
● io: Make better use of multi-cores
● nio: Synchronization among threads will

kill you

 C2008 Paul Tyma36

The s to ry o f Rob Van Behren
(a s r e m e m b e r e d b y m e f r o m a l u n c h w i t h R o b)

● Set out to write a high-performance asynchronous
server system

● Found that when switching between clients, the code
for saving and restoring values/state was difficult

● Took a step back and wrote a finely-tuned, organized
system for saving and restoring state between clients

● When he was done, he sat back and realized he had
written the foundation for a threading package

 C2008 Paul Tyma37

Synchronous I /O
s t a t e i s k e p t i n c o n t r o l f l o w

 // exceptions and such left out
 InputStream inputStream = socket.getInputStream();
 OutputStream outputStream = socket.getOutputStream();

 String command = null;
 do {
 command = inputStream.readUTF();
 } while ((!command.equals(“HELO”) && sendError());

do {
 command = inputStream.readUTF();
} while ((!command.startsWith(“MAIL FROM:”) && sendError());
handleMailFrom(command);

do {
 command = inputStream.readUTF();
} while ((!command.startsWith(“RCPT TO:”) && sendError());
handleRcptTo(command);

 do {
 command = inputStream.readUTF();
} while ((!command.equals(“DATA”) && sendError());
handleData();

 C2008 Paul Tyma38

Server in Action

 C2008 Paul Tyma39

Our 2 se rver des igns
(s y n c h r o n o u s m u l t i t h r e a d e d)

● One thread per connection
– All code is written as if your server can only handle one

connection

– And all data structures can be manipulated by many other
threads

– Synchronization can be tricky

● Reads are blocking
– Thus when waiting for a read, a thread is completely idle

– Writing is blocking too, but is not typically significant

● Hey, what about scaling?

 C2008 Paul Tyma40

Synchronous
Mu l t i th readed

● Mailinator server:
– Quad opteron, 2GB of ram, 100Mbps

ethernet, linux 2.6, java 1.6
– Runs both HTTP and SMTP servers

● Quiz:
– How many threads can a computer run?

– How many threads should a computer run?

 C2008 Paul Tyma41

Synchronous
Mu l t i th readed

● Mailinator server:
– Quad opteron, 2GB of ram, 100Mbps

ethernet, linux 2.6, java 1.6

● How many threads can a computer run?
– Each thread in java x32 requires 48k of stack

space
● linux java limitation, not OS (windows = 2k?)

– option -Xss:48k (512k by default)
– ~41666 stack frames
– not counting room for OS, java, other data,

etc

 C2008 Paul Tyma42

Synchronous
Mu l t i th readed

● Mailinator server:
– Quad opteron, 2GB of ram, 100Mbps

ethernet, linux 2.6, java 1.6
● How many threads should a computer run?

– Similar to asking, how much should you eat
for dinner?

● usual answer: until you've had enough
● usual answer: until you're full
● fair answer: until you're sick
● odd answser: until you're dead

 C2008 Paul Tyma43

Synchronous
Mu l t i th readed

● Mailinator server:
– Quad opteron, 2GB of ram, 100Mbps ethernet,

linux 2.6, java 1.6

● How many threads should a computer
run?
– “Just enough to max out your CPU(s)”

● replace “CPU” with any other resource

– How many threads should you run for 100% cpu bound tasks?

● maybe #ofCores+1 or so

 C2008 Paul Tyma44

Synchronous
Mu l t i th readed

● Note that servers must pick a saturation point

● Thats either CPU or network or memory or
something

● Typically serving a lot of users well is better than
serving a lot more very poorly (or not at all)

● You often need “push back” such that too much
traffic comes all the way back to the front

 C2008 Paul Tyma45

Acceptor Threads Task Queue

Worker Threads

fetchput

how big should the queue be?
should it be unbounded?
how many worker threads?
what happens if it fills?

 C2008 Paul Tyma46

Design Decisions

 C2008 Paul Tyma47

ThreadPoo l s

● Executors.newCachedThreadPool = evil, die die die

● Tasks goto SynchronousQueue

– i.e., direct hand off from task-giver to new
thread

● unused threads eventually die (default: 60sec)

● new threads are created if all existing are busy

– but only up to MAX_INT threads (snicker)
● Scenario: CPU is pegged with work so threads aren't

finishing fast, more tasks arrive, more threads are
created to handle new work

– when CPU is pegged, more threads is not what you need

 C2008 Paul Tyma48

B lock ing Data S t ruc tu res

● BlockingQueue
– canonical “hand-off” structure
– embedded within Executors
– Rarely want LinkedBlockingQueue

● i.e. more commonly use ArrayBlockingQueue

● removals can be blocking
● insertions can wake-up sleeping threads
● In IO we can hand the worker threads the

socket

 C2008 Paul Tyma49

NonB lock ing Data S t ruc tu res

● ConcurrentLinkedQueue
– concurrent linkedlist based on CAS
– elegance is downright fun
– No data corruption or blocking happens

regardless of the number of threads adding
or deleting or iterating

– Note that iteration is “fuzzy”

 C2008 Paul Tyma50

NonB lock ing Data S t ruc tu res

● ConcurrentHashMap
– Not quite as concurrent

– non-blocking reads

– stripe-locked writes

– Can increase parallelism in constructor

● Cliff Click's NonBlockingHashMap
– Fully non-blocking

– Does surprisingly well with many writes

– Also has NonBlockingLongHashMap (thanks Cliff!)

 C2008 Paul Tyma51

Buf fe redSt reams

● BufferedOutputStream
– simply creates an 8k buffer
– requires flushing
– can immensely improve performance if you

keep sending small sets of bytes
– The native call to do a send of a byte wraps it

in an array and then sends that
– Look at BufferedStreams like adding a

memory copy between your code and the
send

 C2008 Paul Tyma52

Buf fe redSt reams

● BufferedOutputStream
– If your sends are broken up, use a buffered

stream
– if you already package your whole message

into a byte array, don't buffer
● i.e., you already did

– Default buffer in BufferedOutputStream is 8k
– what if your message is bigger?

 C2008 Paul Tyma53

Bytes

● Java programmers seem to have a fascination with
Strings
– fair enough, they are a nice human abstraction

● Can you keep your server's data solely in bytes?
● Object allocation is cheap but a few million objects are

probably measurable

● String manipulation is cumbersome internally

● If you can stay with byte arrays, it won't hurt

● Careful with autoboxing too

 C2008 Paul Tyma54

Papers
(i n d i r e c t r e f e r e n c e s)

● “Why Events are a Bad Idea (For high-
concurrency servers)”, Rob von Behren

● Dan Kegel's C10K problem
– somewhat dated now but still great depth

 C2008 Paul Tyma55

Designing Servers

 C2008 Paul Tyma56

A s ta t i c Web Server

● HTTP is stateless
– very nice, one request, one response
– Many clients, many, short connections
– Interestingly for normal GET operations (ajax

too) we only block as they call in. After that,
they are blocked waiting for our reply

– Threads must cooperate on cache

 C2008 Paul Tyma57

Worker

cache

disk

Client

Worker
Worker

●Create a fixed number of threads in the beginning
● (not in a thread pool)

●All threads block at accept(), then go process the client
●Watch socket timeouts
●Catch all exceptions

Thread per reques t

 C2008 Paul Tyma58

Acceptor Workercreate new Thread

cache

disk

ClientClient

Worker
Worker

●Thread creation cost is historically expensive
●Load tempered by keeping track of the number of threads alive

● not terribly precise

Thread per reques t

 C2008 Paul Tyma59

Acceptor Worker

cache

disk

ClientClient

Worker
Worker

Queue

●Executors provide many knobs for thread tuning
●Handle dead threads
●Queue size can indicate load (to a degree)
●Acceptor threads can help out easily

Thread per reques t

 C2008 Paul Tyma60

A s ta t i c Web Server

● Given HTTP is request-reply
– The longer transactions take, the more

threads you need (because more are waiting
on the backend)

– For a smartly cached static webserver, 2 core
machine, 15-20 threads saturated the system

– Add a database backend or other complex
processing per transaction and number of
threads linearly increases

 C2008 Paul Tyma61

SMTP Server
a much more chatty protocol

 C2008 Paul Tyma62

An SMTP se rver

● Very conversational protocol
● Server spends a lot of time waiting for

the next command (like many
milliseconds)

● Many threads simply asleep
● Few hundred threads very common
● Few thousand not uncommon

– (JVM max allow 32k)

 C2008 Paul Tyma63

An SMTP se rver

● All threads must cooperate on storage of
messages
– (keep in mind the concurrent data

structures!)

● Possible to saturate the bandwidth after a
few thousand threads
– or the disk

 C2008 Paul Tyma64

Cod ing

● Multithreaded server coding is more
intuitive
– You simply follow the flow of whats going to

happen to one client

● Non-blocking data structures are very fast
● Immutable data is fast
● Sticking with bytes-in, bytes-out is nice

– might need more utility methods

 C2008 Paul Tyma65

Questions?

